If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2=8X
We move all terms to the left:
X^2-(8X)=0
a = 1; b = -8; c = 0;
Δ = b2-4ac
Δ = -82-4·1·0
Δ = 64
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$\sqrt{\Delta}=\sqrt{64}=8$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(-8)-8}{2*1}=\frac{0}{2} =0 $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(-8)+8}{2*1}=\frac{16}{2} =8 $
| -18=+5u | | 2y+5=2.6 | | 8(x+6)+4x=14 | | 21=y+19 | | -2x+6+1=9 | | 12=17-x/4 | | 13=n/8 | | 36+4v=8(1+4v) | | 5x=3x=4 | | 5a/6+3=10 | | 5(3x+4)–2x=7x–3(-2x+11) | | 16x=14x+2x | | 21x=-368 | | 249=156-u | | 72=2(p+15) | | 95y=166.25 | | 2x^2-16x=10 | | 1/4(x+8)=0 | | 16-2f=8 | | 17=b/3+13 | | 2x+2(0)=8 | | -3(3y-1)+2y=-11 | | t}{5}+15=-14 | | 6x-36=15x-72 | | x+2x+5=3x+9-4 | | 1+2d=11 | | 1.3x-2.5=-1.2 | | -2x+8=50 | | -2x+4x-7=33 | | 16=8x=20=10x | | -4(x+3)+2x=26 | | 5.6=l-4.09 |